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Abstract—With increasing offshore-related commerce, the
choice of appropriate operations and maintenance activities
must take into consideration safety, costs and performance
targets. Stochastic weather conditions at each site of interest
presents uncertain situations. We present an optimized decision-
making procedure that seeks to maximize monetary benefits
while minimizing safety risks. Our proposed approach outlines
and illustrates application of such a policy by incorporating
traditional weather window analysis using a Markov Decision
Process approach. In particular, the approach is applied in case
study involving the operation of a multipurpose platform at an
offshore Scotland site.

I. INTRODUCTION

Weather conditions—e.g., wind speeds, wave heights,
etc.—can vary greatly over the year at offshore sites. Off-
shore activities associated with operations and maintenance
(O&M) of multipurpose platforms (MPPs), see Fig. 1, for an
example, are gaining in importance and often need different
service activities periodically and/or under constraints to avoid
downtime and loss of revenue (as with energy generation
from wind, waves, etc.). The literature contains examples
for dealing with O&M using weather windows in statistical
analyses—e.g., in aquaculture farming, offshore wind energy
generation, etc. These studies feature offshore sites around the
world including the Gulf of Mexico, the east and west coasts
of Japan, the west coast of Ireland, the Barents Sea, the North
Atlantic Ocean, and the UK [1]–[6]. Reference [7] presented
a methodology for weather window prediction that considered
offshore vessels and challenges associated with operations in
Norway. Reference [8] evaluated the marine environment at a
Korean wind farm to select appropriate O&M vessels.

One of the key driving factors for the long-term economical
viability of MPPs, as for offshore renewable energy devices,
is accessibility: the ability to keep, for example, all renewable
energy systems, aquaculture systems, etc. operating. For off-
shore wind farms, accessibility is usually achieved through a

mix of crew transfer vessels (CTVs), service operation vessels
(SOVs), and helicopters that transport specialized technicians.
The feasibility of an O&M activity is assessed by comparing
measured wave heights and wind speeds against operational
capabilities of these transport systems. Differently, in the
UK-China project, INNO-MPP (https://www.ukchn-core.com/
project/inno-mpp/), where the feasibility of a wind-aquaculture
MPP at the same Scottish location discussed in this work
is considered [9], [10], it has emerged that the O&M of
aquaculture systems must usually rely on technicians who
will decide about the acceptability of the metocean conditions
based on more intuitive and human-readable metrics such as
the Beaufort scale, and not on, say, the measured significant
wave height, Hs. The O&M strategies adopted for such MPPs,
then, have to take into account such human factors that can
have a substantial impact on adopted policy.

With multipurpose platforms that are becoming increasingly
common in the “blue economy,” there is a need to be able to
deal with a wide-ranging set of operations related to the in-
tended multiple uses [11]. An archived history of past weather
conditions at a selected site provides us with weather window
statistics that can aid in a rational plan for O&M. Yet, a daily
optimized decision-making guide, for not only minimizing
down time and loss of revenue at the facility but also for
maximizing the safety of the operators, has not been systemat-
ically studied. In the literature, some good examples of studies
have been undertaken that involve the development of O&M
decision models in wind energy applications. For instance,
References [12]–[14] employed a Partially Observed Markov
Decision Process (POMDP) to construct a stochastic model for
quantifying risks and uncertainties, and developed an O&M
decision model for land-based wind turbines. Reference [15]
reviewed many O&M decision support research studies for
offshore wind farms. A reliability-based computational model
was also implemented to establish O&M procedures for an



Fig. 1. Multipurpose Platform Concept [17].

Fig. 2. Temporal trends in mean wind speed at 10 m

offshore renewable energy farm [16].
We propose, by using wind data from a Scottish site, how

a Markov Decision Process can be defined that facilitates
rational decision-making while taking into consideration O&M
constraints as well as site-specific stochastic weather charac-
teristics and the safety.

II. MATERIALS AND METHODS

A. Offshore Wind Speed Data

As far as weather conditions, this study considers the mean
wind speed at 10 m (v10) obtained every 6 hours, from 2008
to 2017, at the location of a planned multipurpose platform
offshore Scotland (lat. 56.5◦, lon. -7◦). Fig. 2 shows the v10
data, smoothed using a 30-day moving window for each year
separately. Seasonal patterns are clear; greater variability and
more severe weather is evident in the winter. These stochastic
characteristics of the weather serve to highlight the challenges
associated with dealing with it, while attempting to schedule
and optimize O&M activities.

B. Beaufort Scale

For the weather window analysis, v10 can be related to the
Beaufort scale, which is an empirical measure relating wind
speed to observed conditions at sea and is widely used in
navigation and voyage forecasts. The original scale had 13
classes (going from 0 to 12), but this study uses only levels
0 to 9; levels greater than 9 are extreme observations and
account for only a small fraction of the data. Table 1 shows
the original Beaufort scale and the modified version used in
this study.

TABLE I
BEAUFORT WIND SCALE

Beaufort
Number

Wind Speed (m/s)
-Original-

Wind Speed (m/s)
-This Study-

0 < 0.5 < 0.5

1 0.5− 1.5 0.5− 1.5

2 1.5− 3.3 1.5− 3.3

3 3.3− 5.5 3.3− 5.5

4 5.5− 7.9 5.5− 7.9

5 7.9− 10.7 7.9− 10.7

6 10.7− 13.8 10.7− 13.8

7 13.8− 17.1 13.8− 17.1

8 17.1− 20.7 17.1− 20.7

9 20.7− 24.4 ≥ 20.7

10 24.4− 28.4

11 28.4− 32.6

12 ≥ 32.6

C. O&M Decision Making Problem Setting

We present next the problem formulation that addresses
O&M decision making for offshore multipurpose platforms.
There are different required work durations, tw, for the
different types of O&M activities involved. Based on the
O&M vessels/equipment needed and the type of O&M activity,
operable (acceptable) weather conditions are defined in terms
of maximum allowable Beaufort number, ξB . Then, from
the data, we need to develop a time series, Xe(t), which
represents favorable time segments with operable weather
conditions. Fig. 3 shows a illustrative example for an activity
with ξB = 4 in January 2008. Triangular pulse-shaped time
segments increase while the Beaufort number is below the
threshold, ξB , and go to zero whenever the weather conditions
get more severe and exceed the threshold, ξB . When an
O&M activity needs to occurs at t0, revenue starts to be lost
after some time, taux, associated with some auxiliary system
spending capacity. The per unit time loss of revenue is defined
as cdown; then, the loss at time t is cdown∗max(D(t)−taux, 0),
where D(t) is the down time (unavailable window) at time,
t. If Xe(t0 + tw) = Xe(t0) + tw, the O&M activity can
be successfully performed and the down time is reset to
zero; otherwise, Xe(t0 + tw) − Xe(t0) is less than tw, and
D(t0 + tw) = D(t0) + tw indicating that the O&M activity
was unsuccessful. In the latter case, a unit failure cost, cfail, is
charged. Successful and failed scenarios of an O&M activity
are illustrated in Fig. 3 with green and red shaded windows,
respectively. Possible changes of Xe(t) when Xe(t0) = i and
tw = 3 (≡ 18 hours) are shown in Fig. 4.

D. Season Identification

Fig. 2 provided an indication of seasonal variability in off-
shore weather at the selected site. For simplicity, a stationary



Fig. 3. Example series of v10, Beaufort scale, and favorable times of operable
weather, Xe(t), where ξB = 4 with illustration of successful and failed
scenarios of an O&M activity where tw = 3 (≡ 18 hours)

Fig. 4. Possible cases of evolution of Xe where tw = 3 (i.e., required work
duration = 18 hours)

stochastic weather process is assumed where each year is
divided into two distinct periods. We are interested in the
transition of the Beaufort number with time; accordingly, three
variables, (B(t − 1),B(t),itime), are used to define seasons
by k-means clustering. B(t) is the Beaufort number at time t
while itime is an annual 6-hour basis time index. Three clusters
with different colors are evident in Fig. 5. The transition time
index can be inferred distinctly for each seasons as the clusters
do not overlap. The purple cluster has benign conditions (low
Beaufort numbers), and its time index range is that of the
summer season, ranging from 490 (= 122.5 days = May 3rd)
to 976 (= 244 days = Sep 1st).

E. Markov Decision Process

A Markov Decision Process (MDP) is a discrete time
stochastic control process that can model situations where
outcomes are partly random and partly under the control of
a decision maker. An MDP is a 4-tuple (S,A, P,R) of state,
action, transition probability and cost (or reward). Reward is
common nomenclature in defining a MDP but, in the present

Fig. 5. Season identification result

study, it is more appropriate to discuss cost. At each discrete
time, the process is in state s ∈ S, while the decision maker
takes action a ∈ A and incurs cost R(s, a) as a result of the
action. The process switches to a new state s′ according to a
known stochastic model, with transition probability P (s

′ |s, a).
The state transitions of an MDP satisfy the classical Markov
property:

P (st+1|st, at, st−1, at−1, . . . , s0, a0) = P (st+1|st, at). (1)

Then, the MDP helps to yield an optimized policy π∗(s).
The policy maps states to actions and the optimal policy is
iteratively found by exploring the best action for each state that
minimizes the overall cost function. Here, a discount factor γ,
0 ≤ γ ≤ 1, is introduced to account for present and future
value of relevant item. Dynamic programming, introduced by
Bellman (1954), may be used to solve the MDP [18]. In this
study, to provide general guidelines that are independent of
time, we assume an infinite horizon problem and the value
iteration is formulated as:

V π
∗
(s) = max

a∈A

[∑
s′∈S

P (s′|s, a)R(s, a, s′)+

γ
∑
s′∈S

P (s′|s, a)V π
∗
(s′)

] (2)

where V π is a value function that represents the expected
overall cost of policy π. The iterations terminate when the
difference between the value function in two consecutive steps
is below a specified level ε (more details can be found in [19]).

F. Markov Decision Process Setting for the Problem

In the present study, there are only two actions, “Go” and
“Stay”. The data are time-indexed every 6 hours. The range for
both favorable and down times is (0,∞). In the finite discrete
MDP process setting that we adopt, we limit this range for
favorable and down times. The maximum favorable and down
times are limited to 126 hours and 54 hours, respectively. For
convenience, a selected number of intervals is used to indicate



favorable and down times. As a result, the favorable times are
{0, 1, 2, . . . , 21} and down times are {0, 1, 2, . . . , 9}. Every
possible pair of favorable and down times is considered a state;
220 states are defined accordingly. An nth state indicates (n
mod 21) time steps of favorable time and a quotient (n/21)
time steps of down time. Transition probabilities are defined
using a matrix of dimension, 2 × 220 × 220 (resulting from
220× 220 inter-state transition probabilities and two possible
actions at each state). Finally, the cost function is also defined
using a matrix of dimension, 220 × 2 (resulting from costs
incurred by the two actions for the 220 states).

The transition probability matrix is constructed from the
data in two steps. First, an intermediate transition matrix of
favorable times is developed from Xe. A transition event from
Xe(t) = i to Xe(t + tw) = i′ (where i′ ∈ {0, 1, ..., tw −
1, i + tw}) is monitored and each occurrence is counted and
included in the matrix of dimension, 22× 22. By normalizing
this count-based matrix row by row, the intermediate transition
matrix results. Second, a reshaping of the matrix considering
actions and the down time, D(t), to yield the final transition
probability matrix for the MDP is needed. When the action
is “Stay”, D(t) will transition to D(t) + tw, regardless of
Xe(t) until D(t) + tw > 9 is true, since the consequence
of the action “Stay” is independent of the stochastic weather
process and we limit down time to 9 time steps (54 hours).
When D(t) + tw > 9, the down time is assumed to stay at
9. The action “Go” results in two scenarios. When the O&M
activity is successful—i.e., Xe(t+tw) = Xe(t)+tw and D(t+
tw)→ 0. If there was at least one bad weather—i.e., Xe(t+
tw) < tw, then the O&M activity is assumed to have failed and
D(t+ tw) = D(t)+ tw. Algorithms 1 and 2 in Fig. 6 indicate
the two steps in the transition probability matrix construction
procedure; Fig. 7 shows the structure of the transition matrix.

A cost matrix is constructed next. For each action “Stay”,
cdown is charged for every state that has longer down time than
taux. For each action “Go”, cdown is also charged for every
state that has longer down time than taux. Additionally, cfail
is charged for states with more severe weather than ξB . For
states that indicate successful O&M activity—i.e., zero down
time—no cost is charged. Algorithm 3 in Fig. 6 shows how
the cost matrix is constructed while Fig. 7 shows the structure
of the cost matrix.

III. A CASE STUDY

A case study with ξB = 5, tw = 4, taux = 2, cdown = −1.5,
and cfail = −1 is considered and the constructed transition
matrices are shown in Fig. 8. Note that taux = 2 means that
for the O&M activity of interest, a loss of revenue results after
2 time steps (12 hours) of unfavorable weather; a duration of
4 time steps (24 hours) of favorable weather with Beaufort
number not greater than 5 is needed for this O&M activity.
The cost associated with lack of use (down time) is 1.5 times
higher than the cost of failure. As a result of the value iteration,

Fig. 6. Algorithms for constructing transition probability matrix and cost
matrix

Fig. 7. Structure of the transition matrix and the cost matrix when tw = 2
(≡ 12 hours), taux = 1 (≡ 6 hours)



Fig. 8. Constructed intermediate transition matrix Asummer(upper left), Awinter(upper right), final transition matrix elements Pstay
summer(center left),

Pgo
summer(center right), Pstay

winter(lower left), Pgo
winter(lower right).



the policy is optimized as follows:

π∗summer (s) =

{
0, (s mod 21) ≤ 1

1, Otherwise

π∗winter (s) =

{
0, (s mod 21) ≤ 3

1, Otherwise

(3)

From the results, one can infer that, in the summer, a duration
of favorable time of operable weather longer than 2 time steps
(12 hours) indicates a “Go” action to do the O&M activity
is recommended. In the more severe weather conditions and
greater variability in the stochastic weather process in the
winter, a duration of favorable time of operable weather longer
than 4 time steps (24 hours) is needed to recommend “Go”.
This optimized policy is independent of the down time since
cdown is assumed constant; however, loss of revenue varies
linearly with down time. In some situations, the loss in revenue
may be exponential with down time or, as for a fish farm,
cdown may be a function of down time; then, an optimized
policy will be dependent on down time. In another scenario, it
is possible that favorable weather is indicated and its duration
exceeds 21 time steps; then, a “Go” action is recommended
at the site due to highly stationary weather.

IV. CONCLUSION

This study proposed a framework to develop an O&M
strategy for multipurpose offshore platforms. The approach
describes an optimized decision making policy given stochas-
tic weather data, as well as O&M activity and cost constraints.
Exhaustive evaluation of all scenarios is possible using a
Markov Decision Policy framework that can be employed in
planned blue economy projects.
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